Low-Rank Approximation of Difference between Correlation Matrices Using Inner Product

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low Rank Approximation using Error Correcting Coding Matrices

Low-rank matrix approximation is an integral component of tools such as principal component analysis (PCA), as well as is an important instrument used in applications like web search, text mining and computer vision, e.g., face recognition. Recently, randomized algorithms were proposed to effectively construct low rank approximations of large matrices. In this paper, we show how matrices from e...

متن کامل

Correlation Clustering with Low-Rank Matrices

Correlation clustering is a technique for aggregating data based on qualitative information about which pairs of objects are labeled ‘similar’ or ‘dissimilar.’ Because the optimization problem is NP-hard, much of the previous literature focuses on finding approximation algorithms. In this paper we explore how to solve the correlation clustering objective exactly when the data to be clustered ca...

متن کامل

Low-rank Matrices in the Approximation of Tensors

Most successful numerical algorithms for multi-dimensional problems usually involve multi-index arrays, also called tensors, and capitalize on those tensor decompositions that reduce, one way or another, to low-rank matrices associated with the given tensors. It can be argued that the most of recent progress is due to the TT and HT decompostions [1]. The differences between the two decompositio...

متن کامل

Non-iterative generalized low rank approximation of matrices

As an extension to 2DPCA, Generalized Low Rank Approximation of Matrices (GLRAM) applies two-sided (i.e., the left and right) rather than single-sided (i.e., the left or the right alone) linear projecting transform(s) to each 2D image for compression and feature extraction. Its advantages over 2DPCA include higher compression ratio and superior classification performance etc. However, GLRAM can...

متن کامل

Literature survey on low rank approximation of matrices

Low rank approximation of matrices has been well studied in literature. Singular value decomposition , QR decomposition with column pivoting, rank revealing QR factorization (RRQR), Interpolative decomposition etc are classical deterministic algorithms for low rank approximation. But these techniques are very expensive (O(n 3) operations are required for n × n matrices). There are several rando...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Sciences

سال: 2021

ISSN: 2076-3417

DOI: 10.3390/app11104582